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SUMMARY 

This report is divided in to  three parts. The first part (Sections I 

through IV) is a summsly of the  resul ts  of a l i t e r a t u r e  survey conducted on the 

general topic of towed vehicle systems. The second part (Section V) is an ana- 

l y t i c a l  development which demonstrates that one of the  fundamental assumptions 

which most investigators have made (considering the tar cable's tangential 

f r i c t iona l  force t o  be negligible) is incorrect. 

is a bibliography. 

The third part (Section V I )  



Since the  problem areas encountered are quite similar the survey covers 

both airborne and submersible systems. 

is that much work remains t o  be done (both theoretically and experimentally) 

before a significantly greater level of understanding than currently exists is  

achieved i n  the area of towed vehicles. 

Briefly, the conclusion of the survey 

l o  attempt i s  msde herein t o  indicate the many and varied areas of 

appl icabi l i ty  f o r  the solution of the tared vehicle problem; especially since 

mesy applications in t h i s  era of heavy government support of research are class- 

ified. 

Also, in an effor t  t o  enable the reader t o  follow the evolutionary path of the 

many investigators brief abstracts are given f o r  some of the references i n  the 

bibliography, Section V I ,  The bibliography is by no means an attexupt t o  list 

a l l  of the numerous references found, for they are extensive in llumber and in 

the large lnost have not contributed significantly t o  furthering the state of 

the art. 

hopefully, obtain an appreciation of the magnitude and scope of the problem area. 

Rather, a general description of t he  technical problem areas i s  presented. 

Rather it represents a sampling framwhich the interested reader can, 

One of the odd features of this topic area is that relatively few of 

the research reports written on towed vehicles have been published i n  journals. 

This feature has resulted i n  vast duplication of effor t ;  especially i n  the Last 

five years during which time agencies of several governments have been supporting 

research e f fo r t s  in the area of the stability of towed vehicles. 

11. GL4UEXL"S MATHEMATICAL MODEL 

Most researchers tend t o  duplicate (both by intent  and inadvertently) 

the works of Glauert [l, a who published his papers on the s t a b i l i t y  of an 
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airborne non-lifting towed vehicle i r r  r ec t i l inear  motion i n  1.930 and 1934 

respectively. 

Glauert's analyses incorporate f lexible  cables and make the assump- 

t ion of straight, level  f l i g h t  i n  which the cable moves from one equilibrium 

shape t o  the next (an instantaneous displacement) while the tared vehicle behaves 

dynamically. 

investigators have also adopted i s  tha t  the cabre dmg is  perpendicular t o  the 

cable. 

f i e s  the equations which d e t e d n e  the shape of the cable. 

from Glauert, "Further investigation i s  necessary t o  examine the dynamical 

effects on the wire (cable) which are ignored f n  the present analysis." 

Another assumption made by Glauert, which l i ke  the above, l a t e r  

That is9 there exists no skin f r ic t ion  component, This greatly simpli- 

Hawever, quoting 

fflauert's investigations were directed towards developfng s t a b i l i t y  

c r i t e r i a  f o r  both lofigitudinal and lateral perturbations f o r  an assumed equilib- 

rium position for nori-lifting bodies, H i s  resul-ts ape presented parametrically; 

the parameters being combinations of cable length, cable weight, towed body 

weight, r a t io  of drag of cable t o  drag of towed body, and angle of inclination 

of cable. He did not attempt t o  couple the longitudinal and lateral  s t a b i l i t y  

problems e 

O f  the  many investigations which fslbswed Glauert's work the most 

significant contribution was made in 1947 by L, Landweber and M, B o  Prot ter  

[ 31 It is  equally significant tbat t h i s  paper has gone completely unnoticed 

by subsequent researchers and as 8, conseeenee none of the investigations conducted 

since yield results delfcate enough to be termed better than "adequate. I' 

main contribution of [3] 9s t ha t  the authors included the  tangentfsl  f r i c t ion  

force of the tawing cable i n  t h e i r  mathematical model and, using measured quan- 

t i t i es  f o r  t h i s  forceg demonstrated t h a t  the equi l fbr fm configuration of the 

system i s  al tered appreciably by the tangential  d q ,  

The 

some completely independent 



studies have been made i n  

the elegance of [3J and 
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reeent years on this problem, but they fa i l  t o  achieve 

consequently never demonstrate the  importance of the 

tangential drag. 

ation which can be obtained fran a slight modification of their  mathematical 

m o d e l .  

t r i v i a l .  

matical model reduces t o  a system of concurrent forces. The resul ts  of [3] 

are presented i n  w h a t  might be termed a complicated fonn because the authors 

resorted t o  numerical means t o  solve the  result ing equations. 

w i t h  computer solution i n  mind, derive the basic equations and present them i n  

a very simple form. 

E q u a l l y  important i s  that the i l l u s t r a t ive  examples given i n  [3] are for  water 

Landweber and Prot ter  did not glean a l l  of the usef'ul infonn- 

Specifically, they failed t o  formulate a manent equation which i s  non- 

In Glauert's case the moment equation is  trivial because h i s  mathe- 

In Section V we, 

We also develop the moment equation referred t o  above. 

whereas the results of our study are i l l u s t r a t ed  f o r  air. 

111. SOME OTEIER TYPES UF l3IYESTIWIONS 

An unfortunate waste was created by the  excessive duplication of e f for t  

by the many investigators. The ma3hematical models which they used are very 

much similar t o  Glauert's; which is quite understandable sans %he benefit of 

the experience of the others (especially- Leandweber and Protter)  This has 

resulted i n  m o d e l s  which are necessarily crude {Glauert emphasizes this) t o  

facil i tate the mathematics. Accordingly, the resul ts  are at best of a first 

order approximation. However, the  mor3el(s) have proven t o  be adequate f o r  deter- 

mining some of the fundamental problem areas; a f ac t  which is  borne out by exper- 

imental work. For example Shanks E, 6, 7 9  3 has done a considerable amount 

of research on the lateral s t ab i l i t y  of towed, l i f t i n g  airborne vehicles. 

Shanks' ef for t s  differ from most other investigations i n  tha t  he seeks ways of 

s t ab i l i z ing  an unpiloted tared vehicle ( a  d i f f i c u l t  analyt ical  undertaking) 
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rather than accepting a given confguration and determining (parametrically) 

regions of unpiloted s t ab i l i t y  f o r  it. 

Perhaps the most unusual (and most pessimistic) paper written concern- 

ing the s t ab i l i t y  of towed vehicles i s  tha t  of S"one 

p i l o t  i n  World War 11. 

# who was a gl ider  

H i s  theoret ical  study was ?is dissertation (1947). 

'I... blind tared f l i g h t  of long duration i s  impossible. If the towing airplane 

i s  l o s t  sight of, the p i lo t  of the towed airplane i s  forced usually a f t e r  a 

few seconds t o  release the tar l ine,"  One must keep fn mind tha t  t h i s  paper 

was written pr ior  t o  the "electronics age." 

As indicated above a nmber of investigations have been conducted 

with the tar ing environment being water. See references 10 through 12 and 15 

through 26. However, many of these studies have placed primary emphasis on the 

ta red  vehicle (hydrofoils, instrument packages, etc.  ) 5 the system analysis being 

of passing interest  t o  the investigators. &en those reports which are concerned 

w i t h  the system prove t o  be less  searching studies than some of the studies 

conducted w i t h  airborne vehicles, although o x e  more [3] i s  an exception t o  

t h i s  criticism. The Latter cri t icism stems mainly from the investigators reluc- 

tance t o  make any concession f o r  the Oifference in media from Glauert's work. 

For example Cla is  vir tual ly  a duplieatioc of a small part  of Glauerb's 

work. Nevertheless, despite t h e i r  many shortcomings the authors of Elj 13 
made the only reasonable attempt uncovered i g  t h i s  survey t o  analyze ti towed 

vehicle i n  a turn, They do t h i s  considering filly submerged hydrofoils, f o r  

which they establish s t ab i l i t y  c r i t e r i a ,  

experimental projects were in i t i a t ed  t o  verify t h e i r  findings. 

It i s  of i n t e re s t  t o  note t h a t  no 

I V e  BASIC; PROBLEM 

The basic system of concern i n  the study of the  tawed vehicle problem 



consists simply of a towing vehicle, a cable and the towed vehicle, which can 

be l i f t i n g  o r  non-lifting. 

Focusing on one of the  several logical s ta r t ing  points i n  the analysis 

of the airborne system, the cable connection t o  the towing vehicle, the complex- 

i t y  of the general problem becomes evident. A l l  the reports studied begin w i t h  

the assumption that the dynamic properties of the tar ing vehicle are campletely 

known and that i ts  f l i gh t  pattern is stable. Any other assumption, such as the 

ta r ing  craft  moving through a region of turbulence is, i n  effect ,  t o  place a 

forcing function on the cable. This, of course, would create traveling waves 

i n  the cable making the analysis of t he  system (the cable dynamics superimposed 

upon the dynamics of the towed vehicle) quite complex. It is obvious, of 

course , that  the forcing function can a l so  originate at  the connection of the 

tared vehicle t o  the cable. It has been argued E3-J that  f o r  l aw velocit ies 

(approximately 200 mph at sea level)  that the traveling wave dmqs out and can 

be neglected. The ent i re  problem of high subsonic veloci t ies  and supersonic 

veloci t ies  has not been investigated analytically. 

range w o u l d  no doubt prove t o  be an interesting stukv. 

The transi t ion velocity 

Reference kq carries Glauert's work one s i a i f i c a n t  step further 

by showing that  there exists a c r i t i c a l  (unstable) speed range. 

t o  note that the authors of Elg 
It i s  interesting 

were very apologetic, s ta t ing that they w e r e  

not aware of and thus f o r  the most part duplicated Glauert's work. 

Reference [la aside from being a fair  review of the state of the 

, contains as i t s  main contribution parametric studies of the art,  sans c37 
longitudinal and lateral s t a b i l i t y  of l i f t i n g  bodies both coupled and uncoupled. 

This is  accomplished by studying the equations of motion (using l inea r  theory) 

on an analog computer. 

The l i t e r a tu re  does oot contain any reference t o  the study of towed 
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e la s t i c  bodies. The aeroelastic analysis of l i f t f n g  bodies i n  f ree  f l i gh t  

remains a complex problem tQ analyze. An extreme but relatively simple case, 

the s t ructural  s t ab i l i t y  of a right c i rcular  cylindrical  she l l  (missile) with 

arbi t rary boundary conditions under the action of a longitudinal pulsating load, 

i s  receiving considerable attentioa ir, the l i t e ra ture ,  Thus, it i s  seen tha t  

t h i s  small, significant portior, of Lhe overall. system i s  not easi ly  attacked o r  

solved, 

Nevertheless, the ultimate problem t o  pursue i s  the s t a b i l i t y  of a 

three dimensional, multi-degree of freedom, damped, e las t ic ,  towed vehicle, 

both l i f t i n g  and non-lifting, considering both reetililzear motion and turns. 

The s t a t e  of the ar t  i s  such tha t  w e  are  a long way off from being able t o  make 

a meaningful analytical  analysis of t h i s  problem. The fun%mental mathematical 

model must be improved incrementalQrj supgcrtd, by .E parallel experimental e f for t ,  

v. EQUILIBRIUM CONFIGURATION ma Trnsmri  OF A LIGHT FUXIELE CABLE IN A UNIFORM 

FIOW FIELD, 

In  t h i s  section w e  present the resu l t s  of our study of the effect  Qf 

a cable's tangential drag force 03 the  orientation of a tow vehicle system, 

demonstrating that the skin frict . ion force is not a negligible effect  as most 

investigators, sans proof, have assumed, The equations developed should prove 

t o  be a valuable s tar t ing point iE future investigations t o  determine s t a b i l i t y  

c r i t e r i a  f o r  the system, and equally important they can be used by practicing 

engineers t o  obtain more accurate estimates of cable shapes. 

Two fundamental categories in to  which ~ C Y W  vehicle studies may be 

divided are l igh t  (negligible weight) and heavy cables, 

was t o  display the effect  of skin f r i c t ion  ana in t h a t  ir: most cases the weight 

of the cable i s  negligible i n  comparison t o  that of the body being tawed we 

I n  that our purpose 

confined the study t o  the case of the l i gh t  cable, More import.ant, t h i s  a s s u p -  

t ion aided i n  simplifying the result ing equations SO t h a t  a t tent ion w a s  properly 
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focused on the effect  of skin f r ic t ion ,  The other assumptions made w e r e  steady- 

state aerodynamics, constant tow vehicle velocity, equilibrium conf'iguration 

f o r  the taw cable (heEce system), and the airplane and tawed vehicle w e r e  assumed 

t o  be rigid bodies, 

and drag t o  be emplayed f o r  the towed vehicle when i n  straight flight at  a con- 

stant speed. 

listed i n  the bibliography and w i l l  not be repsted herein. 

The Last assungtion allowed fo r  constant w%lUeS of l i f t  

These assumptions are discussed a t  length i n  many of the reports 

Figure 1 is a sketch of the systexu malyzed, deffnfig a few of 

the variables which appear in the development below. 

Figure 1 - Tow "Icm S Y S m  

A f ree  body diagram of a generic s e p e n t  of the cable of length 6s is 



e8z- $-s 
and 

T d q  - A M  = O  

Let  us write the tangential drag per uni t  length as 

d a  = -W)ds 
and the normal component per unit Length as 

(3) 

(4) 
AN = 81q) d4 

where f @ )  and $(4) are experimentally determined and are functions of the 

velocity of the cable, It turns at tha t  8 [f) caa be expressed as 

f l y ) =  K LoJzq 
where r(c of course i s  a f’unctisn of the velocity o f  the cable, Thus Eqn, 

(4) m y  be rewr i t t en  as 

( 5 )  

It f ac i l i t a t e s  compu%atisns t o  leave ( 3 )  ir, i t s  present rorm f o r  now, 

We w i l l  now formulate the governing differeatdal equation f o r  the 

determination Qf cable shapes, Placing ( 5 )  into (2) we  obtain 

T may be determined by placing (3 )  into (1) and iastegratingo Thus, 
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Hence, from ( 6 )  and (7) we obtain 

Dividing (8) by d q  yields 

or 

where 

and 

Using Eqn, (10) and the geometric relations 

it i s  easy t o  make camparative studies be*-si Glauert's model which neglects 

the effects  of skin friction and our mathemtical model. which, of course, includes 

the effects  of skin friction, 

m o r e  valuable equation by selecting a s l i g h t l y  altered mathematical model; that 

However, before dobg that let us develop one 
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is, another free body diagram. 

Let 0 be the center of gravity of the towed body which was assumed 

t o  be a particle. Hence the center of gravity i s  the geometric center and l ies 

on the cable. Thus, we have the free body diagram shown i n  Figure 3. 

of 

x x 1- L (Weight of Tawed Body - L i f t )  

Figure 3. - MODES FOR MOMENT CALCULlTIOEJ 

m 

I n  Figure 3 C represents the position vector measured from 

on the cable. Thus, 

rF C = x Z  + 
L 

The cable force T may be writ ten as 

Similarly w e  may form 

and 

Taking moments about point 0 w e  have 

0 t o  any point 

(14) 
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Placing Eqns. (14) through (17) isato (18) we obtain 

where )( 

tar ing vehicle). 

using Eqns. (2), (3) and ( 5 ) .  

and y are as defined i n  Figure 3 (say the point of contact with the 

i n  the last eqyation by We can now replace 3 dN and d'Z 

The result is 

Eqn, (19) allows for the complete determination of a cable configuration 

for a given physical problem, In 

our next report we w i l l  develop a more general equation taking the cable w e i g h t  

i n to  account, 

The potency of the equation is self evident. 

Therefore, we w i l l  not dwell on the moment f o m l a t i o n  herein. 

t = K/T, 
where is  the tension i n  the cable at 3 8 Thus, nondimension- 

a l iz ing  the lengths 5 

Let us now return t o  Eqns, (10) through (13), Define 

Placing (20) in to  (10) we obtain 
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The boundary condition necessary t o  integrate Eqn, (21) is obtained from Eqn. 

(6) , We have defined 

Therefore from (6) i n  nondimensional form we have 

as the boundary conditioh, 

by computer using a Runga Kutta scheme and the result ing curves fo r  cable shapes 

w e r e  plotted. 

Using t h i s  boundary condition Eqn, (21) was integrated 

Intui t ively one would expect the tangential  drag t o  increase w i t h  

velocity and tend t o  force the cable t o  approach a straight l ine  configuration 

i n  the l imi t ,  

have selected an  extremely low velocity f o r  our i l l u s t r a t ive  example. 

end experimental data was taken from E43 which w a s  measured i n  a flow of 

40 ft./sec. Thus by a curve f i t t i n g  process f&) w a s  computed t o  be 

Hence t o  i l l u s t r a t e  the importance of the f r i c t iona l  force we 

To t h i s  

Figure 4 contains comparative curves f o r  the case where the  drag of 

the towed vehicle i s  negligible. 

zero tared body drag produces a ver t ica l  tangent a t  the point of contact Of 

tared vehicle and cable. 

Thus it i s  solely a theoret ical  result .  The 

Figure 5 contains comparative curves f o r  an arbitrary set Of input 

data of drag and lift f o r  the towed body which resu l t s  i n  an angle $@ a t  the  

cable-tared vehicle connection of 0.6 radians. 

The significant difference i n  the curves of Figures 4 and 5 is  en t i re?b  
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due t o  the effect of tangential drsg. Physic-, when one ellminates t h i s  

effect  he, in essence, is mak.bg the assumption that the tension throughout the 

cable i s  constant. Thus, there i s  but me possible cable configuration f o r  the 

Glauert caser It is a fair first approxfmation and mathematically Glauert's 

equations are e a s i e r t o  work w i t h  than the equations developed above b u t  a8 the 

study shows the Glauert results are not sufY'feiently delicate for accurate WOA. 
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behavior fo r  the condition investigated indicates t ha t  the vehicle w i l l  

s a t i s fy  Bureau of Ships specifications, 

Heaving Forces and Pitching Manents on a Semi-submerged and Restrained 

Prolate Spheroid Proceeding i n  Regular Head Waves, Lee, C., Ins t i tu te  of 

Engineering Research, January, 1964, 79 pp. 

Describes experiments i n  which heaving forces and pitching moments were 

measured on a semi-submerged spheroid which w a s  towed at  a constant speed 

in regular head waves. 

Factors Effecting the Design of a System f o r  T a r i n g  a Body on a Long 

Length of W i r e ,  Stevens, G., Royal A i r c r a f t  EstabUsfvaelrt (G. B r i t . ) ,  

March, 1961, rev. September, 1962> 21 pp. 

A method of calculating the diameter of w i r e  t o  be used and the drag area 

of ta rge t  t o  be towed in order t o  meet a given requirement of mximwn 

speed of tar ing and m x h m  length of tow is presented. 

ence i s  made t o  a towed target  system of the D e l  Mar C a a p a n y  of Los Angeles 

and fur ther  anaJysis i s  made of U. Sa A i r  Force t e s t  data on t h i s  system. 

Analysis predicts t ha t  there i s  a region a t  high subsonic airspeed and at  

medium a l t i tudes  where the towed system can become unstable. 

S t ab i l i t y  and Drag of Towed Underwater Bodies, Admiralty Underwater Weapons 

Establishment (Go B r i t  ) , 1963 e 

These characterist ics include trim-txib 

The predicted 

Part icular  refer- 
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Effects of Certain Ship Motions on Cable Tension i n  Systems f o r  Handling 

Submerged Bodies, Ralroff, F,, Navy Underwater Sound Lab., 7 August 1g2, 

27 PP. 

Certain conclusions are reached concerning the characterist ics of tared 

bodies, especially ship-tared f i sh  o r  sonar systems, w i t h  respect t o  weight 

and mass. 

The Transmission of Vibration by Towed Cables, WQA, R., Bolt, Beranek, 

and Newman, Inc. , 28 May 1962, 36 pp. 

Cables of the order of a few cm. i n  diameter, moving i n  water and having 

an average density of 1 t o  8 gm/c.c, are considered. 

w i l l  be taken i n  the range of 50-500 cm/sec. 

of 1/100 cm /sec. appropriate f o r  water, the diameter Reynolds number i s  

i n  the range 10,000 t o  100,000. 

the principal source of vibration transmission, 

Note on the S tab i l i ty  of Tubular Elastic Bodies Tared i n  Water, Coad, S., 

and Hollings, Do , Admiralty Underwater Weagora Establishment (Go B r i t  e ) 

The speed of motion 

For a kinematic viscosity 
2 

Vortex shredding may be expected t o  be 

July, 1962, 9 PP. 

Vibration and Towing Characteristics of Surface-Suspended Hydrophone 

Systems, Walton, C. and Merriam, Mo Dadd Taylor Model Basin, 

An experimental investigation to determinate sources and methods of reduc- 

ing cable vibrations i n  acoustic measuring systems, t o  provide information 

concerning f i l l -scale  taring behavior, and t o  accurately define the tow- 

ing configuration of such systems. 

A Synthesis and Discussion of Towing Arrangements fo r  Large, Variable 

Depth Sonar Systems Internal t o  a Ship, Fridge, H'> Navy Underwater Sound 

Lab. , 6 February 1962, 11 pp. 

Forces Measured i n  a Towline During Towing Tests of a Series G-60 High- 
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Speed Sled Target, McGinley, J. C., IYTMB Report 589, 1941, 

28. Wind "unnel Test of Three Towed Wirged Vehicles, L O ~ Z O S ,  So, David Taylor 

Model Basin, January, 1964, 31 pp. 

Sta t ic  s t a b i l i t y  characteristfcs O f  3 prototype towed vehicles: the Grarman 

ASQ-46, Johrasonville ElM-lO9, and khmsnv i l l e  Brpd-llQ, w e r e  obtained by 

subsonic wind tunnel tests. 

The Hydmdynamie Design of a Cable-Towed Body Suitable for Economical 29. 

Productfons, Gay, So, David Taylm Model Basin, December, 19599 23 pp. 

The generalhydrdpmnic requfremeats are l i s t ed  and the design approach 

is described. Basin tests of a prototype body indicate that  the design 

requirements we= sa t i s fac tor i ly  achieved, 

General Design Criteria for Cable-Towed Body Systems Using Faired and 

U n f a i r e d  Cable, Ellsworth, W,, P m m ~ d c s  Csrp., October, 1960, 59 pp. 

A method f o r  rapid selection of design parameters t o  satisfy requirements 

30. 

f o r  cable-tawed instrument system is described, Curves are presented which 

f a c i l i t a t e  the deterninat3.m of' cable diameter, cable length, and required 

d m  force without the need fo r  performing cable calculations. 

Program f o r  the S tab i l i ty  A d l y s i a  of 8 Twed Bdy, Schumara, E., B a d  31. 

Two computer programs are discussed which analyze the s t a b i l i t y  of a body 

towed i n  air, A detailed deseriptfan of input md m t p t  are included, 

32, Stab i l i t y  of a Tawed Qbgect, Reid, W, , Naval. Ordnaazce -bo, October 1964, 

. 24 pp. 

Problem: 

air in a straight l ine  at eonstant speed by a single towline, which is 

That of a bilaterally syrmaetrical obJecS being pulled along i n  

assumed t o  remain straight and of eonstant lesagth, 

t o  the diff. equations of motion are developed, 

Linearized approxlmation 

Two characterist ic 



33 

34 

35. 

36 

37 

38 0 

39. 

40. 
' *  

I )  

-22- 

equations are obtained from these by postulating exponential solutions. 

A cri terion f o r  s t ab i l i t y  is  then tha t  the roots of these equations have 

only negative r e a l p a r t s .  

On the Action of Wind on Flexible Cables with Application t o  Cables Tared 

Below Airplanes and Balloon Cables, McLeod, ARC, R & M 554, 1918. 

Tables f o r  Computing the Equilibrium Configuration of a Flexible Cable 

i n  a Uniform Stream, TMB Report 687, March, 1951. 

Preliminary Theoretical Investigation of Several Methods f o r  Stabil izing 

the Lateral Motion of a High-speed Fighter Airplane WCA, IIM L522124, March, 

1953 * 

Characteristics of Long Tarlines i n  Non-Maneuvering and Orbiting Flight, 

Woodward, W. C., NADC Report No. ED-6340, June 1963. 

Longitudinal EQuatiQns of Motion of an Airborne Tared Vehicle Incorpor- 

ating an Approximation of Cable Drag and Inertia EXfects, Law, E., Princeton 

University, May 1964, 76 pp. 

Longitudinal equations of motion of a cable and towed vehicle system are 

developed. 

included i n  the development, 

hinged at both the tar ing aircraf t  and towed vehicle, 

has two degrees of freedom. 

the "familiar language of a i r c ra f t  dynamics," 5 equations i n  5 unknowns are 

ut i l ized.  

On The Lateral Vibration of Rotating, Orbiting Cables, Targoff, W. P o ,  

AIAA 3rd  Aerospace Sciences Meeting, 1966. 

Mechanics of Flexible Lines, Langer, R. Me, A I M  3 r d  Aerospace Sciences 

Meeting, 1966. 

A Note on the Drag Force on W i r e s ,  Morgan, P.G., Applied Scient i f ic  Research, 

Section A, Vol. 15, No. 4-5, 1966, pp. 394-396. 

Approximation f o r  the effects  of cable drag and iner t ia  are 

Cable i s  assumed t o  ac t  as a r igid body 

The system thus 

However, i n  order t o  present the equation i n  


